Publications

What is a Publication?
17 Publications visible to you, out of a total of 17

Abstract

Not specified

Authors: Indrani Bera, Mrinal Vishwas Marathe, Pavan V. Payghan, Nanda Ghoshal

Date Published: 25th Jan 2018

Publication Type: Journal

Abstract (Expand)

One of main steps in a study of microbial communities is resolving their composition, diversity and function. In the past, these issues were mostly addressed by the use of amplicon sequencing of a target gene because of reasonable price and easier computational postprocessing of the bioinformatic data. With the advancement of sequencing techniques, the main focus shifted to the whole metagenome shotgun sequencing, which allows much more detailed analysis of the metagenomic data, including reconstruction of novel microbial genomes and to gain knowledge about genetic potential and metabolic capacities of whole environments. On the other hand, the output of whole metagenomic shotgun sequencing is mixture of short DNA fragments belonging to various genomes, therefore this approach requires more sophisticated computational algorithms for clustering of related sequences, commonly referred to as sequence binning. There are currently two types of binning methods: taxonomy dependent and taxonomy independent. The first type classifies the DNA fragments by performing a standard homology inference against a reference database, while the latter performs the reference-free binning by applying clustering techniques on features extracted from the sequences. In this review, we describe the strategies within the second approach. Although these strategies do not require prior knowledge, they have higher demands on the length of sequences. Besides their basic principle, an overview of particular methods and tools is provided. Furthermore, the review covers the utilization of the methods in context with the length of sequences and discusses the needs for metagenomic data preprocessing in form of initial assembly prior to binning.

Authors: K. Sedlar, K. Kupkova, I. Provaznik

Date Published: 17th Dec 2016

Publication Type: Journal

Abstract (Expand)

Parathyroid hormone and parathyroid hormone-related peptide (PTHrP), and its receptor (PTH1R) play an important role in differentiation of bone and cartilage in the developing stages. Constitutive dimers of PTH1R are believed to be dissociated by ligand binding, and monomeric PTH1R is capable of activating G protein. Jansen type metaphyseal chondrodysplasia is caused by missense mutations in PTH1R, which are constitutively active even without the presence of the ligands. However, the underlying pathomechanisms remained largely unknown. In this study, we have attempted to further characterize a PTH1R missense mutation H223R responsible for Jansen type metaphyseal chondrodysplasia. cDNAs encoding wild-type (Wt)- and H223R mutant (Mut)-PTH1R were transfected into HEK293T cells, and as a consequence of western blots, both the Wt- and Mut-PTH1R proteins showed several fragments between 55 and 65 kDa in size, while the patterns of N-glycosylation were distinct between them. Then we hypothesized that the Mut-PTH1R might physically interact with the Wt-PTH1R, leading to affect the downstream cAMP accumulation. Co-immunoprecipitation assays clearly showed that interaction occurred not only between the Wt-PTH1R themselves, but also between the Wt- and Mut-PTH1R. Furthermore, we performed CRE reporter assays to investigate cAMP accumulation. Constitutive, ligand-independent cAMP accumulation was observed in HEK293T cells expressing the Mut-PTH1R. Interestingly, there was a statistically lower constitutive activity in HEK293T cells co-expressing the Wt- and Mut-PTH1R proteins. Summarizing, it seems likely that Mut-PTH1R may be, at least in part, co-localized with Wt-PTH1R by forming a heterodimer, leading to affect the function to each other.

Authors: J. Shimomura-Kuroki, M. Farooq, T. Sekimoto, N. Amizuka, Y. Shimomura

Date Published: 11th May 2016

Publication Type: Journal

Abstract (Expand)

Seven-transmembrane receptors (7TMRs) are involved in nearly all aspects of chemical communications and represent major drug targets. 7TMRs transmit their signals not only via heterotrimeric G proteins but also through beta-arrestins, whose recruitment to the activated receptor is regulated by G protein-coupled receptor kinases (GRKs). In this paper, we combined experimental approaches with computational modeling to decipher the molecular mechanisms as well as the hidden dynamics governing extracellular signal-regulated kinase (ERK) activation by the angiotensin II type 1A receptor (AT(1A)R) in human embryonic kidney (HEK)293 cells. We built an abstracted ordinary differential equations (ODE)-based model that captured the available knowledge and experimental data. We inferred the unknown parameters by simultaneously fitting experimental data generated in both control and perturbed conditions. We demonstrate that, in addition to its well-established function in the desensitization of G-protein activation, GRK2 exerts a strong negative effect on beta-arrestin-dependent signaling through its competition with GRK5 and 6 for receptor phosphorylation. Importantly, we experimentally confirmed the validity of this novel GRK2-dependent mechanism in both primary vascular smooth muscle cells naturally expressing the AT(1A)R, and HEK293 cells expressing other 7TMRs.

Authors: D. Heitzler, G. Durand, N. Gallay, A. Rizk, S. Ahn, J. Kim, J. D. Violin, L. Dupuy, C. Gauthier, V. Piketty, P. Crepieux, A. Poupon, F. Clement, F. Fages, R. J. Lefkowitz, E. Reiter

Date Published: 26th Jun 2012

Publication Type: Journal

Abstract (Expand)

Pseudohypoparathyroidism type Ia (PHPIa) is caused by GNAS mutations leading to deficiency of the alpha-subunit of stimulatory G proteins (Gsalpha) that mediate signal transduction of G protein-coupled receptors via cAMP. PHP type Ic (PHPIc) and PHPIa share clinical features of Albright hereditary osteodystrophy (AHO); however, in vitro activity of solubilized Gsalpha protein is normal in PHPIc but reduced in PHPIa. We screened 32 patients classified as PHPIc for GNAS mutations and identified three mutations (p.E392K, p.E392X, p.L388R) in four unrelated families. These and one novel mutation associated with PHPIa (p.L388P) were introduced into a pcDNA3.1(-) expression vector encoding Gsalpha wild-type and expressed in a Gsalpha-null cell line (Gnas(E2-/E2-) ). To investigate receptor-mediated cAMP accumulation, we stimulated the endogenous expressed beta(2) -adrenergic receptor, or the coexpressed PTH or TSH receptors, and measured the synthesized cAMP by RIA. The results were compared to receptor-independent cholera toxin-induced cAMP accumulation. Each of the mutants associated with PHPIc significantly reduced or completely disrupted receptor-mediated activation, but displayed normal receptor-independent activation. In contrast, PHPIa associated p.L388P disrupted both receptor-mediated activation and receptor-independent activation. We present a new subgroup of PHP that is caused by Gsalpha deficiency and selectively affects receptor coupling functions of Gsalpha.

Authors: S. Thiele, L. de Sanctis, R. Werner, J. Grotzinger, C. Aydin, H. Juppner, M. Bastepe, O. Hiort

Date Published: 14th Apr 2011

Publication Type: Journal

Abstract (Expand)

We used parameter scanning to emulate changes to the limiting rate for steps in a fitted model of glucose-derepressed yeast glycolysis. Three flux-control regimes were observed, two of which were under the dominant control of hexose transport, in accordance with various experimental studies and other model predictions. A third control regime in which phosphofructokinase exerted dominant glycolytic flux control was also found, but it appeared to be physiologically unreachable by this model, and all realistically obtainable flux control regimes featured hexose transport as a step involving high flux control.

Authors: L. Pritchard, D. B. Kell

Date Published: No date defined

Publication Type: Not specified

Abstract (Expand)

This paper examines whether the in vivo behavior of yeast glycolysis can be understood in terms of the in vitro kinetic properties of the constituent enzymes. In nongrowing, anaerobic, compressed Saccharomyces cerevisiae the values of the kinetic parameters of most glycolytic enzymes were determined. For the other enzymes appropriate literature values were collected. By inserting these values into a kinetic model for glycolysis, fluxes and metabolites were calculated. Under the same conditions fluxes and metabolite levels were measured. In our first model, branch reactions were ignored. This model failed to reach the stable steady state that was observed in the experimental flux measurements. Introduction of branches towards trehalose, glycogen, glycerol and succinate did allow such a steady state. The predictions of this branched model were compared with the empirical behavior. Half of the enzymes matched their predicted flux in vivo within a factor of 2. For the other enzymes it was calculated what deviation between in vivo and in vitro kinetic characteristics could explain the discrepancy between in vitro rate and in vivo flux.

Authors: B. Teusink, J. Passarge, C. A. Reijenga, E. Esgalhado, C. C. van der Weijden, M. Schepper, M. C. Walsh, B. M. Bakker, K. van Dam, H. V. Westerhoff, J. L. Snoep

Date Published: No date defined

Publication Type: Not specified

Powered by
(v.1.16.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH